全场所有人都安静了下来,目瞪口呆的看着黑板上,萧易给出来的解决步骤。
这样……就搞定了?
是不是有点太快了?
张一唐也仔细看着他亲自写出来的这些步骤,认认真真地思考着其中每一步所代表的含义。
然而,不论他怎么思考,脑海中就只有一个想法:原来还可以这样解决高阶项的问题?
他之前是怎么思考的来着……
好吧,他之前完全就思考不出来。
下面的第1排位置上,恩里克·邦别里,还有皮埃尔·德利涅等众多大佬们也都在。
看着萧易给出的解决方法,他们眯起眼睛,思考了片刻后,最后也就只剩下了感慨。
“果然,像这种问题,还是需要这小子来才行啊。”德利涅摇头感慨了一声。
邦别里也点了点头:“谁说不是呢?\b”
他仔细思考着萧易的这个方法,忽然说道:“你有没有觉得,他的这个方法,\b即使是运用于傅里叶展开本身,好像也可以将其中存在的误差累积问题给解决掉?”
“是吗?”德利涅重新看了一眼,思考了片刻后,他的眼前就是一亮:\b“没错,的确如此!”
而与此同时,也有其他人发现了这一点,立即就有人站起来提问:“萧先生,如果您的这个方法能够用来解决圆法展开上的问题的话,那么我们是不是也可以将它用到傅里叶展开上面,同样也可以用来解决误差累计问题?”
对于这个问题,萧易没有任何意外,笑着点头道:“是的,你发现的很快,这两者之间本身就是紧密联系的,当然,在这个过程中需要对它进行一些小小的变化。”
“能不能请您给我们演示一下?”提问者激动地说道:“这一点对我很重要,我感觉它能够帮助我完成我的课题。”
“当然没问题。”萧易笑着点头:“张教授,还是要麻烦你了。”
张一唐也从思考中回过了神,他说道:“不麻烦,这也给我带来了启发,你说吧。”
“嗯。”萧易接着便继续说道。
“首先从刚才说过的将筛法与加权技术结合,我们就可以得到:【g(x)=n=?N∑Ndn?n(x)+∣n∣>N∑1+∣n∣k(x)】”
“通过计算EN′(x)来验证误差的控制效果,由于w(n)的引入,高阶项的影响被显著削弱,从而保证了整体结果的精确性。”
【EN′(x)=|n|>N∑dn?n(x)=|n|>N∑1+|n|k(x)】
“……”
跟随着萧易的讲述,张一唐也继续在黑板上往下写。
全场的人们都跟着思考起来。
虽然他们可能不懂圆法展开,但是对于傅里叶展开,懂的人可就相当多了。
作为一个十分经典的数学方法,它可以将一个周期函数表示为正弦和余弦函数的无穷级数,本来就被应用于解决各种各样的问题上面。
至于傅里叶展开的高阶项问题,主要涉及傅里叶级数中高频分量对函数重构精度的影响,懂的人应该都听说过吉布斯现象,就是高阶项问题的一种表现形式。
可以说,数学界的人们在使用这个方法的时候,经常会因为这种问题而感到头痛。
而现在这个问题似乎得到了极大的解决,这让他们如何不仔细听呢?
说不定,就像那位提问者一样,能够在未来帮助他们解决课题当中的一个问题。
“……总之就是这样,根据以上的方法,我们可以减弱高频项,稳定累积误差。”
“\b从而实现对傅里叶展开中的高阶项问题的控制。”
大概十分钟之后,萧易的讲述结束。
他笑着道:“当然,我认为还有很多可以挖掘的地方,能够进一步降低高阶项问题的影响,只不过时间有限,我暂时就讲到这里了,相信各位可以找到。”
“还有什么其他的问题吗?”\b
他看了一眼在场的数学学者们。
时间很快过去,没有人再继续提问了,同时,还有绝大多数的人记录着萧易刚才说的那些东西,完全没有分心。
半晌后,张一唐便笑着开口道:“看样子是没有了。”
“那就行。”萧易点点头,随后深深地打了个瞌睡:“看来我可以去休息了。”
“哈哈,那你就早点休息吧。”张一唐笑道:“哦对了,在最后我也替数学界问你一下,你最近又在研究什么问题呢?现在我们都有点不习惯这么久没有看到你成果的日子了。”
“呃……”萧易略显尴尬地摸了摸鼻子,说道:“总而言之,应该也是个很重要的东西,只不过嘛,这东西比较偏向应用。”
“应该要不了多久各位就能见到了。”